Assessment of Once Daily Dosing with ProZinc® Insulin in Diabetic Beagle Dogs

Cynthia R. Ward VMD PhD1, Martha Winhall DVM2, Carla Kroh DVM3, Walt Ingwersen DVM4, Philip Watson BVetMed5

1 University of Georgia, Athens, Georgia USA 2InterVivo Solutions Inc., Ontario, Canada 3Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany 4Boehringer Ingelheim Animal Health, Ontario, Canada

Abstract: The purpose of this study was to assess glucose control of PZI insulin (ProZinc®) given SID in dogs with laboratory-induced diabetes mellitus. The hypothesis was that ProZinc® will control hyperglycemia and clinical signs in diabetic dogs using a SID posology. Nine well-controlled diabetic dogs on twice daily lente insulin (Caninsulin®) were transitioned to ProZinc® as a single morning dose while maintaining their twice daily feeding regimen. The initial ProZinc® dose of 1U/kg was decreased to 0.4-0.5U/kg because of asymptomatic hypoglycemia and then increased by 0.05-0.1U/kg every 5 days as needed. Glucose control was determined by continuous interstitial glucose monitoring, glucometer, urine ketone, and fructosamine measurements. Food and water consumption, bodyweight, clinical observations, and physical exam parameters were used to assess clinical control. This was a non-randomized, non-blinded laboratory study conducted over 56 days. After Day 22, ProZinc® insulin showed a clear and dose dependent biphasic glucose lowering effect over 24 hours. Onset of action was 1-2 hrs, with two peaks of activity occurring at 8-10 and 12-14 hrs. Duration of action was 20-22 hrs. At D56 average weight and water consumption was consistent with those at D0; fructosamine was slightly increased. Food consumption remained consistent. The final ProZinc® dose range was 0.45-0.8U/kg; however, 3 dogs may have required subsequent upward adjustments. These results show a biphasic glucose lowering effect of ProZinc® over each 24 hour period, clearly demonstrating that SID dosing is appropriate when using this insulin. The starting dose should be less than 1U/kg, but may be higher under field conditions.

Materials and Methods: This was a non-randomized, non-blinded, laboratory study including 9 Beagle dogs with chemically induced diabetes mellitus. On the first day of baseline (Day -4), subjects were acclimated to housing conditions and placement of continuous glucose monitoring (CGM) devices. A series of health screening measures including veterinary examination, monitoring serum fructosamine analysis, hematocrit, clinical chemistry analysis and urinalysis were performed, deeming all subjects suitable to continue onto the trial. In addition, the following procedures were initiated: 3x daily interstitial fluid (ISF) glucose value capture via CGMs, 3x daily blood glucose (BG) measurements via glucometer, 2x daily clinical observations, daily urine output determination and daily food/water consumption measurements. During acclimation, animals were maintained on a previously established diabetic treatment regimen of twice daily Caninsulin® administration following AM and PM feed offerings. On Day -1, PM Caninsulin® doses were withheld to serve as a washout prior to initiation of ProZinc® dosing the following morning. Once daily administration of ProZinc® began on Day 0 at a dose of 1U/kg SID. Dosing was conducted in the AM, following a food offering, and PM feeding occurred 8 hours after dosing. Starting on Day 1, doses were adjusted down or withheld as needed, to address concerns about hypoglycemia, although all dogs were clinically normal. Due to a more marked response than anticipated in several subjects, the initially planned dose of 1U/kg was decreased on Day 4 to 0.5U/kg for 8 subjects and to 0.42 U/kg for the 9th subject. Beginning on Day 5, scheduled dose adjustments in increments of 0.1U/kg occurred every 5 days, as needed based on individual diabetic control. Beginning on Day 25, doses were adjusted down by no more than 0.05U/kg and effective Day 28, downward dose adjustments of ProZinc® no longer occurred unless clinical signs were present. By this time, optimal doses for many subjects had not yet been determined and as such, the study was extended to Day 42. In an attempt to minimize the degree to which blood glucose levels continued to fluctuate, the feeding to dosing schedule was changed such that daily ProZinc® administration was timed to occur 15 minutes (vs one hour) after AM feed offering and the PM feed ration was provided 10 hours (vs 8 hours) following dosing. Lastly, to obtain a more robust data set, the study was extended until Day 56 for 6 of the 9 subjects. Over the course of study, in addition to the daily procedures initiated at baseline, blood collections for fructosamine analysis were performed every 5 days (Day 22 and again at Day 56). Hematology and clinical chemistry analyses were conducted on Days 0, 28, and 42, urinalysis on Days 0 and 28 and veterinary examinations on Days 27 and 42. Urine Chemistri® analysis was also conducted every 7 days until Day 42. Initially, animal body weights were measured every 7 days but beginning on Day 21, were performed on the day prior to scheduled dose adjustments. Food consumption, water consumption and urine output were determined until Day 42.

Conclusions: 1. ProZinc® Insulin controlled glycemical parameters and clinical signs in diabetic dogs when given once daily 2. ProZinc® Insulin showed a dose-dependent biphasic glucose lowering activity when given once daily 3. Clinical and glycemic control in diabetic dogs given Caninsulin® twice daily was similar to that seen with ProZinc® once daily.